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Employing a recently proposed ‘multi-wave interaction’ theory (Glazman 1992), 
inertial spectra of capillary-gravity waves are derived. This case is characterized by a 
rather high degree of nonlinearity and a complicated dispersion law. The absence of 
scale invariance makes this and some other problems of wave turbulence (e.g. 
nonlinear inertia-gravity waves) intractable by small-perturbation techniques, even in 
the weak-turbulence limit. The analytical solution obtained in the present work for an 
arbitrary degree of nonlinearity is shown to be in reasonable agreement with 
experimental data. The theory explains the dependence of the wave spectrum on wind 
input and describes the accelerated roll-off of the spectral density function in the 
narrow sub-range separating scale-invariant regimes of purely gravity and capillary 
waves, while the appropriate (long- and short-wave) limits yield power laws 
corresponding to the Zakharov-Filonenko and Phillips spectra. 

1. Introduction 
The subject of this paper is turbulence of surface gravity-capillary waves, although 

the formalism can be applied to other problems of nonlinear wave dynamics, such as 
inertia-gravity and Rossby waves in the ocean and atmosphere, etc. The weak 
turbulence theory presently available for these problems (Zakharov, L’vov & Falkovich 
1992) proved successful in many cases. However, some of its constraints considerably 
limit its scope. In particular, weak turbulence theory requires scale invariance (as 
yielded by a power-law type of dispersion law) and localization of external sources and 
sinks in the wavenumber-frequency space to yield practical results even for weakly 
nonlinear problems. Owing to formidable mathematical difficulties, weak turbulence 
theory does not account for higher-order nonlinear effects. Therefore, some intuitive 
and less formal approaches may prove advantageous in many cases. An example is 
given by Phillips (1985) where weak turbulence of deep-water surface gravity waves is 
considered with the source functions continuously distributed in the wavenumber 
space. A similar approach, but going beyond the weak turbulence limit (and called the 
‘multi-wave interaction theory’) was suggested recently (Glazman 1992) to explain 
observed variations in the exponent for power-law spectra of surface gravity waves. 
The Kolmogorov assumption of locality of nonlinear wave-wave interactions is crucial 
in these theories. Provided this assumption remains approximately valid for an 
increased number of the resonant Fourier components, multi-wave interaction theory 
could in principle be applied to a broad class of problems. Indeed, it does not require 
the lowest degree of nonlinearity, simple dispersion laws or simple expressions for the 
wave energy density, and it can be used for weakly non conservative systems - as 
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demonstrated earlier. However, owing to its heuristic nature, multi-wave interaction 
theory needs thorough experimental verification. 

Capillary-gravity waves are characterized by a highly complex expression for the 
potential energy, 

U = $pg r2 dx + ~p [( 1 + lVr12)1’2 - 11 dx, (1.1) s s  
where 7 = ~(x, t )  is the elevation of the fluid surface above the zero-mean level, g is the 
acceleration due to gravity, and g is the coefficient of surface tension divided by fluid 
density p.  The dispersion law is 

(1 4 
which, while permitting three-wave resonant interactions, eliminates scale-invariance 
(actually, statistical self-affinity) of the wave field. Characteristic wavelengths at which 
(1.1) and (1.2) are relevant extend from hundredths and up to ten centimetres - the 
waves amenable to accurate laboratory investigation. Thus, the capillary-gravity 
waves are highly interesting as a test case. Besides, these waves are primarily 
responsible for radar backscatter by the ocean surface, and thus are of great practical 
interest. 

Laboratory (Jahne & Riemer 1990) and field (Hwang et al. 1993; Hara, Bock & 
Lyzenga 1994) observations showed that, contrary to intuitive expectations, the 
wavenumber spectrum in the capillary-gravity range does not exhibit a monotonic 
transition from the gravity wave to the capillary wave regime. Instead, it experiences 
an accelerated roll-off at a rate exceeding the rates of both gravity and capillary spectra 
roll-offs. The accelerated roll-off commences at wavenumbers which show no noticeable 
dependence on the wind energy input (Jahne & Riemer 1990), although the influence 
of long waves appears to be important (Hara et al. 1994). This behaviour finds a simple 
explanation in the framework of the present theory. 

In $2, the theoretical approach is reviewed. Spectra of capillary-gravity waves are 
derived in $3. In its present form, the theory ignores some interesting, although well- 
known, effects of longer waves on the capillary-gravity ripples (e.g. Phillips 1981). 
These include a highly non-local (in the wavenumber space) energy exchange through 
the radiation stress exerted by longer waves and through the generation of ‘parasitic 
capillarities’ at the crests of steep gravity waves (Longuet-Higgins 1963). Other factors 
of short-long wave interactions include an additional acceleration ‘ felt’ by the short- 
scale waves riding on top of longer waves. Since the present study focuses only on the 
energy transfer by the local inertial cascade, some discrepancies with the observations 
are to be expected; these are discussed in $4.  

w2 = gk + gk3, 

2. Multi-wave interaction theory for capillary-gravity waves 
Let us consider a conservative spectral flux of wave energy. The external energy 

source acts at lower frequencies-outside our inertial range. Therefore, a specific 
mechanism of wave generation is not addressed here. The rate Q of energy input, 
assumed to be known, equals the rate of energy transfer down the spectrum. Following 
the earlier reasoning (Glazman 1992), Q is related to the characteristic time of 
nonlinear wave-wave interaction (the ‘ turnover time’), t,, and the characteristic 
energy En transferred from a cascade step n to step (n+ 1) by 

where the water density p appears because Q is taken per unit mass of water. Provided 
En and t ,  can be expressed in terms of k, w and wave amplitude a, equation (2.1) allows 

PQ = Enltn, (2.1) 
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one to derive the spectrum by means of elementary algebra (e.g. Frisch, Sulem & 
Nelkin 1978; Larraza, Garrett & Putterman 1990). Let us express these parameters in 
terms of the relevant quantities. 

An approximate equi-partition of energy between the kinetic and the potential parts 
allows one to write the surface density of the total wave energy, E, as 

E % Pk(Y2) + ~ ( ( v Y ) 2 > 1 ,  (2.2) 

where the angular brackets denote an ensemble average. To pass from (1.1) to (2.2) we 
assumed ((Vy)') 4 1 which is justified for natural seas (e.g. Cox & Munk 1954). The 
energy E is related to the spectral density of the wave energy by 

n n n  

E = S(w) dw = F(k, 8) k d8 dk, J JJ 
where the integration is carried out over all wavenumbers and frequencies. Here, S(o) 
is the frequency spectrum and F(k, 8) is the two-dimensional wavenumber spectrum of 
the wave energy. 

The amount of energy, En, transferred by the cascade mechanism during time t ,  is 
estimated as 

En = r " ' S ( w )  dw, 
J urn 

where (w,, w , + ~ )  is the width of a cascade step (which must be much smaller than the 
width of the inertial range), and the ratio r = wn+JwI is constant and sufficiently 
greater than unity-as required by the assumption of locality of wave-wave interactions 
in the frequency space. Indeed, differentiating (2.4) over w, yields 

- dE,/do, = S(w,) - rS(rw,) = S(o,) [ 1 - r l -p] ,  

where the latter equality is valid for wave spectra of type S(w) cc w-P. Provided the 
spectrum rolls off sufficiently fast (i.e. rl-p 4 l), we have 

S(W) % - dE(w)/dw. (2.5) 

Although the spectrum being derived does not follow a power law w-P, the above 
approximation can be easily checked a posteriori. From (2.2) it follows that En for 
gravity-capillary waves can be written as 

En M + a(a ,  kJ2] .  (2.6) 

Here, a,  is the Fourier amplitude of surface oscillation at the frequency/wavenumber 
scales w, and k,, corresponding to the nth step in the spectral cascade. 

The derivation of the turnover time is formally based on the scaling of the collision 
integral in the kinetic equation (Zakharov & L'vov 1975; Phillips 1985; Larraza et al. 
1990). However, we shall introduce this timescale in a less formal fashion which leads 
to useful generalizations. To this end let us notice that the nonlinearity of the wave 
process is measured by the ratio, E ,  of the fluid particle velocity, u, to the wave phase 
velocity, c = w / k  (Whitham 1974). Since fluid particles in a surface wave on deep water 
execute an approximately orbital motion in the vertical plane with radius equal to the 
wave amplitude and period 2x/w, the value of u at a given scale is estimated as a,  w,. 
Correspondingly, the ratio u / c  is 
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This quantity represents the small parameter in deterministic perturbation theories. 
However, since the kinetic equation for the wave action, N(k) = F(k)/w, is derived for 
second statistical moments, the equations of statistical theory are developed in powers 
of 2. Terms (i.e. collision integrals) of order 2 correspond to three-wave interactions, 
while each additional Fourier component accounted for in the interaction integral adds 
new terms which are 2 times as great as a preceding term. The vth term is of order 
s ~ ( ” - ~ ) .  Thus, the characteristic time of nonlinear wave-wave interactions increases as 
the number of interacting harmonics grows. For three-wave interactions, this time is 
given by t-l FZ we2, and for an arbitrary number, v, we have (see also Larraza et al. 
1990) 

(2.8) t-1 (&(u-2) 

Relationship (2.8) is very convenient, for it allows one to carry out all calculations 
in a general form and then take appropriate limits for long- and short-wave 
asymptotics: v = 4 for gravity waves on deep water and v = 3 for capillary waves. 

Apparently, the actual number of the resonantly interacting wave harmonics in the 
transitional, gravity-capillary range should be allowed to take values between 3 and 4. 
This leads us to view v as a statistical quantity. Using this broader interpretation of v, 
it is then natural to further assume that the mean ‘effective’ number of the resonantly 
interacting harmonics should increase with an increasing degree of the wave 
nonlinearity (Glazman 1992). The following heuristic argument hopefully makes this 
point more transparent. 

In the absence of ambient fields (such as variable currents or long-wave oscillations), 
the kinetic equation is given by 

(2.9) 

where p(k) is the spectral density of the input flux of wave action (from wind), and 
V,-T(k)  denotes the divergence of the action flux in the wavenumber space. In a 
random wave field, a few waves whose steepness is well above the average can always 
be found. Hence, the degree of wave nonlinearity may be locally very high. Accounting 
for the corresponding higher-order terms in the kinetic equation (derived for the 
averaged quantities), one can formally write 

dN/dt + V , .  T(k) = p(k),  

V,-T(k)  = I,+I,+ ...+ I,+ ... . (2.10) 

Here, I, are collision integrals accounting for interactions among m waves satisfying 
resonance conditions 

~ , , + w ~ + . . . ~ w ,  = 0, k , k k  ,+...) k ,  = 0 (2.1 1) 

(non-resonant terms can be eliminated by appropriate canonical transformations 
(Zakharov et al. 1992). It has been argued (Glazman 1992) that intermittently 
occurring rare events of steep and breaking waves (characterized by a locally high 
nonlinearity, hence a large, or even infinite, number of interacting Fourier 
components), result in an increased mean (over a large time interval and large surface 
area) number v of the resonantly interacting harmonics. While this v may be 
substantially greater than the minimum resonant number appearing in weak turbulence 
theory, the energy and action spectral transfer may still be dominated by the weakly 
nonlinear inertial cascade. Thus, the ‘effective’ v is introduced as an unknown function 
of the problem, the assumption of locality of wave-wave interactions in the 
wavenumber space remaining in force. Although the total flux of the wave action is 
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composed of many partial fluxes, the turnover time given by (2.8) is determined by the 
slower components of (2.10). In the absence of a rigorous theory for the effective value 
of v in (2.8), we shall relate this quantity to external parameters in a heuristic way in 
§4* 

Let us consider the case of an external input concentrated at wavenumbers below a 
certain k, marking the high-wavenumber boundary of the ‘generation range’. That is, 
at k > k,, p ( k )  = 0, and the spectral flux is purely inertial. It is given by 

pQ = I” 44 k dk [ A k ,  6)  do. 

En @,(an kn)2(u-2) x pQ (= const), 

Correspondingly, equation (2.9) for the inertial range yields 

where n 2 1. 
Using (1.2) and (2.6), equation (2.13) results in 

(2.12) 

(2.13) 

(2.15) 

and 1 / ~  = (a/g)1’2 gives the characteristic lengthscale of the problem. The explicit 
dependence of k on w ,  as follows from (1.2), is 

4g3 + 27w40- 
108~7~  * 

Based on (2.14) and (2.5), the energy spectrum is found as 

(2.16) 

(2.17) 

(2.18) 

where 01 is a (‘ Kolmogorov’) constant of proportionality. The short-wave limit of 
(2.18) is obtained by setting M(w) + co, hence @,(w) + 1. The long-wave limit is found 
by setting M(w) < 1, hence Qu(w) x (M(u))-( ’ -~)/( ’ - ’ ) .  

3. Wave spectra 
For capillary-gravity waves, relationships between the energy spectrum (2.18) and 

the spectra of surface height and surface gradient (i.e. wave slope) are more 
complicated than the corresponding relationships for pure gravity and pure capillary 
waves. Specifically, as follows from (2.2), the spectrum of surface height variation is 
related to (2.18) by 

In the special case of short waves and v = 3, this yields the Zakharov-Filonenko 
spectrum (Zakharov & Filonenko 1967) of weakly nonlinear capillary waves. It is also 
easy to check that the long-wave limit of (3.1) yields spectra of surface gravity waves: 
the Zakharov-Filonenko spectrum (Zakharov & Filonenko 1966) for v = 4 and the 
Phillips spectrum for v-f co. 
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variation (omitting the directional factor, P(0, k)) is found as 
In the wavenumber domain, the two-dimensional spectrum of surface height 

dw 

For simplicity, we assume the following normalization condition for Y(0, k) :  

The two-dimensional spectrum of the wave slope modulus (again, the directional factor 
Y(0,k) is omitted) is found as 

S(w(k)). 
(kg)l12[ 1 + 3M(k)] 
2pg[ 1 + M(k)]”/” 

Fv,(k) = k2F,(k) = (3.4) 

It is useful to present these results in a non-dimensional form by scaling all variables 
as follows: 

where G = (g3/g)l14 and K = (g/v)’I2. In terms of K and 52, the dispersion law (1.2) 
takes the form 

Q2 = K +  K 3 .  (3.6) 

The non-dimensional spectrum of wave energy becomes 

and the non-dimensional spectrum of wave slope is 

where Fv,(K) = ( K ~ / c x )  Fv,(k). 

4. Comparison with laboratory observations 

( 1  990), we need the ‘ saturation function ’ 
To compare these results with the laboratory measurements by Jahne & Riemer 

B(k) = k2Fv,(k). (4.1) 

An example of the Jahne & Riemer measurements is reproduced in figure 1 .  The 
values of the energy flux can be expressed via the external parameters of the 
problem - the mean wind velocity, U, at a height, say, 10 m above the mean sea level: 

(4.2) Q = @,/P,) R, u3, 
where the density ratio is of order and the bulk transfer coefficient of the wave 
energy, R,, is somewhere between 3 x lop5 and 4 x lop5 - as follows from analysis of 
Miles’ linear instability mechanism of wave generation (Zakharov 1992), from its 
empirical parameterizations (Glazman 1994), or from physical reasoning (V. E. 
Zakharov, 1994, personal communication) : R, x @,/p,)”l”. 
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FIGURE 1. The saturation spectral function, B(k), measured by Jahne & Riemer (1990) for wind speed 
values shown for each curve in m SS’: (a) the linear section, B(k,) (in the along-wind direction), of 
the two-dimensional spectrum; (b) (Jahne & Riemer’s (d ) )  the one-dimensional spectral function 
obtained by integrating B(k) over all angles. (Courtesy of the authors.) 

The B(k) calculated in the weak turbulence limit is illustrated in figure 2 where the 
Kolmogorov constant, a = 2 x lop2, is chosen to provide the correct order of 
magnitude (as compared to the measured one) for the lowest curve with U = 5.4 m s-’. 
Apparently, the slow growth of the weak-turbulence spectrum with increasing wind is 
in strong disagreement with the results shown in figure 1. Moreover, the curves show 
no saturation at high wind. Finally, as follows from figure 1, the actual spectrum at 
low frequencies and high winds is close to the Phillips spectrum B(k) = const rather 
than the Zakharov-Filonenko spectrum. All this indicates that the measured spectra 
are dominated by a rather high degree of wave nonlinearity. In order to obtain a better 
agreement with the observations, we shall now permit v to grow as a function of 
increasing wind. 

In principle, v can be related to the energy flux Q arriving from the low-frequency 
range and to the magnitude of the wave spectrum in that range. Formally, this is done 
by matching spectrum (2.18) to the known spectrum of gravity waves at some 
characteristic frequency, wo, chosen as a boundary between the ‘energy supply’ range 
and the inertial capillary-gravity range. Thus we employ the same sort of compatibility 
condition as used in the earlier study (Glazman 1992). For such a frequency, wo (for 
which k o / ~  < l), equation (2.18) simplifies to 

S(@,) = a ’ p g 3 ( u - 2 ) / ( ~ - 1 )  Q 1 / ( ~ - 1 ) ~ ~ ( 5 ~ - 8 ) / ( u - - l )  , (4.3) 

where a’ = a(4v - 7)/(v - 1). As v varies from 4 to infinity, the ratio a’/a changes only 
from 3 to 4. This variation is negligible compared to variations in the other factors of 
(4.3). Demanding S(wo) = So where So is considered to be known, we obtain an 
equation for v. Neglecting the weak dependence of a‘ on v the solution is found as 

While this expression confirms that v is an increasing function of wind, its practical use 
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FIGURE 2. The theoretical saturation function, B(k),  for weakly nonlinear waves (u  = 4). Here, 
CT = 70 cm3 s - ~ ,  g = 981 cm s - ~ ,  and a = 0.02. Numbers at the curves show wind speed U in m s-'. 

FIGURE 3. The theoretical saturation function, B(k),  for u(U)  = 0.2 +0.6U. Here, v = 70 cm3 s-', 
g = 981 cm s?, and a = 0.02. Numbers at the curves show wind speed U in m s-'. 

is limited because it requires knowledge of the wave spectrum at low frequencies. To 
provide So, one would have to consider the entire wave-generation problem, a grand 
task well beyond the scope of the present work. Moreover, with respect to the present 
experimental comparison, such a formal determination of v might be irrelevant. 
Indeed, laboratory experiments greatly limit the wave age by inhibiting the 
development of the inertial cascade in deep-water gravity waves (due to a short wind 
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fetch and limited water depth) and thus creating in that range an artificial physical 
situation. Hence, the determination of So would present a special problem. 

An alternative (and more instructive) approach is to fit some trial function v(U) 
which is reasonable from the physical standpoint. Using, for instance, the simplest 
linear function v = a + bU one can determine empirical coefficients a and b providing 
the best agreement between the theoretical and experimental spectra. Coefficient b will 
give us an idea about the rate at which v grows with increasing energy input. This 
empirical procedure yielded a = 0.2 and b = 0.6 (m s-')-' which corresponds to v = 3.2 
for U = 5 m s-l and v = 9.2 for U = 15 m s-' ; the resulting spectra are plotted in figure 
3. The Kolmogorov constant used in figure 3 , a  = 2 x lo-', is consistent with an earlier 
determination (figures 1 and 3 in Glazman 1992). Apparently, a monotonic growth of 
v with increasing wind leads to a better agreement with the experiment. Assuming a 
more complicated function v( U )  this agreement can be improved further. 

Evidently, the present theory successfully explains several prominent features 
observed in the experiment: the gradually diminishing growth of the spectral level with 
increasing wind, an accelerated roll-off in the transitional range between the gravity 
and the capillary regimes, and the approximate independence of the saturation 
function, B, of k in the low-wavenumber end of our range. 

The main quantitative discrepancy between the predicted and the measured 
spectrum is that the accelerated roll-off of the saturation function observed in the 
experiment commences at wavenumbers about three times as high as those predicted 
in figures 2 and 3. This discrepancy appears to be due to the possible influence of low- 
frequency waves present in actual experiments. The long waves would cause a Doppler 
shift of the capillary-gravity wave frequency and would also lead to a non-local energy 
exchange between the small-scale ripples and the long waves - discussed in 5 1. 

This work was performed at the Jet Propulsion Laboratory, California Institute of 
Technology, under contract with the National Aeronautics and Space Administration. 
Financial support was provided by the Office of Naval Research, Grant No. 
NO00 149251 343. 
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